December 2, 2024

Alberta Transportation and Economic Corridors Main Floor, Provincial Building 9621 – 96th Avenue Peace River, Alberta T8S 1T4

Robert Senior Construction Technologist

Dear Mr. Senior:

CON0022166 Peace Region (Grande Prairie District – South) GRMP Instrumentation Monitoring Site GP042; H40:36, km 37.524 Wanyandie Creek Embankment Slide Section C – 2024 Fall Readings

1 GENERAL

Six slope inclinometers (SIs) (SI22-W2 through W7), nine vibrating wire piezometers (VWPs) (VW20-S1/S3, VW20-D3/D4, and VW20-DS1A/1B/2A/2B/6A), one shape accelerometer array (SAA) (SAA22-P15), and seven vibrating wire load cells (load cells) (Anchor 3U, 5L, 15U/L, 27U/L, and 37U) were read at the GP042 site (includes the GP050 site as well) in the Peace Region (Grande Prairie District – South) (GP South Region) on October 17, 2024, by Courtney Mulhall, P.Eng. and Min Hou, E.I.T. of Klohn Crippen Berger Ltd. (KCB). These instruments were read as part of the GP South Region Geohazard Risk Management Program (GRMP). The site is located on Hwy 40:36, km 37.524. The approximate site coordinates are 5996853 N, 379884 E (UTM Zone 11, NAD 83). A site plan is presented on Figure 1.

The geohazard at the GP042 site consists of a landslide in the embankment fill on the east side of Hwy 40:36 along the north valley slope of the Smoky River.

Remedial work completed at the GP042 site between September 2021 and July 2023 included:

- excavating and reconstructing the slope impacted by the slide near the south end of the site with granular fill, a shear key, and a perforated subdrain;
- installing three drilled cast-in-place concrete pile walls on the east side of the highway, with concrete walers and subdrains that discharge into riprap swales, as follows:
 - pile wall 1 (73 piles, 1.2 m diameter, 13.5 m to 17.5 m deep) installed south of the existing binwall with tie-back anchors along the south half of the wall,
 - pile wall 2 (83 piles, 1.5 m diameter, 12.4 m deep) installed downslope of the existing binwall, and

2024-12-02 GP042 Fall Report.docx A05116A01

Klohn Crippen Berger Ltd. 109, 4208 97 St NW • Edmonton AB T6E 5Z9 • Canada t 780.444.0706 • www.klohn.com

- Pile wall 3 (37 piles, 1.2m diameter, 13.9 m deep) installed north of the existing binwall;
- flattening the backslope on the west side of the highway and constructing finger drains,
 French drains, and swales on the backslope;
- installing a subdrain with two 1.2-m diameter corrugated steel pipe (CSP) manholes in the west highway ditch; and
- installing a 1-m diameter CSP culvert below the highway with a riprap swale on either end.

This remedial work is shown on Figure 2 prepared by Thurber Engineering Ltd. (Thurber) but is shown in the available imagery shown on Figure 1.

A geotechnical site investigation was conducted at the GP042 site in 2020 by the previous consultant. The stratigraphy encountered during the 2022 investigation varied, but generally consisted of highway fill (clay or gravel), clay, till, or some combination thereof, overlying bedrock (clay shale, sandstone, and siltstone).

1.1 Instrumentation

KCB read the instruments at this site in the spring and fall of 2021, before resuming readings in the fall of 2024. Between the fall of 2021 and fall of 2024, the instruments were read by another consultant during the construction phase. Instrumentation installation details are tabulated in Table 1.1. Instrument locations are shown on Figure 1. Any instruments not included in Table 1.1 or shown on Figure 1 are assumed to be inoperable and are not presented or discussed herein.

Before construction, 2 SIs, 24 VWPs, and 6 SPs were installed by the previous consultant to monitor movement of the slide mass and groundwater conditions, respectively. During construction, 6 SIs and 1 SAA were installed to monitor deflection of the three pile walls and 6 load cells were installed to monitor anchor loads at pile wall 1. The SAA and load cells are connected to a multi-channel data logger (Model CR6 from Campbell Scientific), which is programmed to record a reading of the SAA and load cells hourly. Some of these instruments are now inoperable (e.g., destroyed, sheared, or lost) as detailed in Table 1.1 (see table notes).

The operable instruments are protected by above-ground casing protectors. The datalogger for the SAA and the load cells is protected by a locked stainless-steel enclosure.

The operable SIs were read using the same metric RST Digital MEMS Inclinometer System that was previously used to read the SIs by KCB in 2021. The SAA and load cells were read using Campbell Scientific LoggerNet software. The operable VWPs were read using a GEOKON vibrating wire readout (Model GK-404).

Table 1.1	Instrumentation Installatio	n Details ¹
-----------	-----------------------------	------------------------

Instrument Ins		Instrume	nstrume Data Installed		dinates (m)	Ground Surface	Stick	Depth	Condition
ID (Pile No.)	nt Type	Date installed	Northing	Easting	Elevation ² (m)	Up (m)	(mbgs ²)	Condition
TH20-DS2		SI	Jul. 06, 2020	5997067	380002	1134.4	0.8	<u>23.4</u>	Inoperable ³
TH20 DS5		SI	Jul. 09, 2020	5997209	380061	1141.4	1.0	17.3	Inoperable ⁴
Pile Wall 1	SI22-W2 (P37)	SI	Sep. 14, 2022	5997081	379996	1139.5	1.0	16.4	Operable

	SI22-W3 (P57)	SI	Oct. 26, 2022	5997102	380006	1141.2	1.1	13.3	Operable
	SI22-W4 (P100)	SI	Jul. 20, 2022	5997147	380038	1139.6	1.0	13.3	Operable
Pile Wa	all 2 SI22-W5 (P117)	SI	Jul. 20, 2022	5997170	380049	1140.6	1.1	13.3	Operable
SI22-W6 (P132)		SI	Jul. 20, 2022	5997190	380058	1141.5	1.0	12.7	Operable
Pile Wa	all 3 SI22-W7 (P174)	SI	Jul. 20, 2022	5997272	380082	1151.7	1.2	14.3	Operable
Pile Wa	all 1 SAA22-P15 (P15)	SAA ⁵	Nov. 24, 2022	Pile	e P15	1137.5	N/A	19.0	Operable
	W20 P1A	VWP	Jun. 23, 2020	5996932	379925	1128.1	N/A	6.4	Inoperable ⁴
	VW20-P1B	VWP	Jun. 23, 2020	5996932	379925	1128.1	N/A	17.7	Inoperable ⁴
	VW20-P2	VWP	Jun. 25, 2020	5997067	379983	1138.0	N/A	<u>9.8</u>	Inoperable ⁴
	VW20-P3	VWP	Jun. 26, 2020	5997093	379994	1141.0	N/A	14.9	Inoperable ⁴
	VW20-P4	VWP	Jun. 29, 2020	5997156	380022	1142.0	N/A	7.9	Inoperable ⁴
	VW20-P5	VWP	Jul. 03, 2020	5997194	380040	<u>1148.2</u>	N/A	13.1	Inoperable ⁴
	VW20-P6	VWP	Jul. 04, 2020	5997221	380051	<u>1159.8</u>	N/A	8.8	Inoperable ⁴
	VW20-S1	VWP	Jun. 28, 2020	5996995	379955	1133.0	N/A	16.8	Operable
	VW20-S2	VWP	Jul. 10, 2020	<u>5997282</u>	380085	1152.3	N/A	12.5	Inoperable ⁴
	VW20-S3	VWP	Jul. 11, 2020	5997343	380125	1152.9	N/A	12.7	Operable
	VW20 D1	VWP	Jun. 23, 2020	5996938	379991	1127.8	N/A	6.4	Inoperable ⁴
	VW20 D2	VWP	Jun. 27, 2020	5997078	379971	1145.0	N/A	5.2	Inoperable ⁴
	VW20-D3	VWP	Jun. 27, 2020	5997154	380008	1144.0	N/A	10.7	Operable
VW20-D4		VWP	Jun. 30, 2020	5997200	388027	1148.1	N/A	11.6	Operable
VW20-DS1A		VWP	Jun. 24, 2020	5996898	379928	1121.8	N/A	4.6	Operable
VW20-DS1B		VWP	Jun. 24, 2020	5996898	379928	1121.8	N/A	11.4	Operable
	VW20-DS2A	VWP	Jul. 12, 2020	5997067	380002	1134.2	N/A	8.2	Operable
	VW20-DS2B	VWP	Jul. 12, 2020	5997067	380002	1134.2	N/A	22.2	Operable
	W20 DS3A	VWP	Jul. 06, 2020	5997151	380041	1139.4	N/A	10.7	Inoperable ⁴
	W20 DS4A	VWP	Jul. 07, 2020	5997188	380057	1140.4	N/A	4.9	Inoperable ⁴
	VW20-DS4B	VWP	Jul. 07, 2020	5997188	380057	1140.4	N/A	20.7	Inoperable ⁴
	VW20-DS5	VWP-	Jul. 09, 2020	5997209	380061	1141.4	N/A	5.0	Inoperable ⁴
	VW20-DS6A	VWP	Jul. 05, 2020	5997159	380098	1121.0	N/A	6.1	Operable
	VW20-DS6B	VWP	Jul. 05, 2020	5997159	380098	1121.0	N/A	21.3	Inoperable ⁴
	TH20-D5	<u>SP</u>	Jun. 30, 2020	5997232	380040	1150.3	0.8	3.1	Inoperable ⁴
	TH20-D6	<u>SP</u>	Jul. 01, 2020	5997360	380102	1156.6	0.9	8.6	Inoperable ⁴
	TH20-B1	<u>SP</u>	Jul. 09, 2020	5996956	379865	<u>1148.2</u>	0.9	12.2	Inoperable ⁴
	TH20-B2	<u>SP</u>	Jul. 09, 2020	5997032	379925	1150.2	0.9	13.6	Inoperable ⁴
TH20-B3		<u>SP</u>	Jul. 10, 2020	5997176	379968	1165.3	1.1	3.7	Inoperable ⁴
TH20-B4		<u>SP</u>	Jul. 10, 2020	5997244	380009	1168.7	1.0	4.5	Inoperable ⁴
	VC2421 (3U)	Load Cell ⁵	2022						Operable
	VC2422 (5L)	Load Cell ⁵	2022						Operable
Pile	Pile VC2419 (15U)		2022]					Operable
Wall	VC2420 (15L)	Load Cell ⁵	2022	Pile Wall	1 Anchors		N/A		Operable
1	VC2417 (27U)	Load Cell ⁵	2022]					Operable
	VC2418 (27L)	Load Cell ⁵	2022]					Operable
	VC2416 (37U)	Load Cell ⁵	2022]			Operable		

Notes:

¹ Instrument installation details were taken from reports and data files prepared or provided by the previous consultant(s) or TEC. Instrument coordinates and stick ups (where applicable) were confirmed by KCB using a handheld GPS (accuracy of ± 5 m) and a tape measure, respectively.

² Meters below ground surface (mbgs). Bottom reading depth for operable SIs, and tip or screen depth for piezometers. Either bottom reading or casing depth for inoperable SIs.

³TH20-DS2 has sheared at an approximate depth of 8.5 m below ground surface.

⁴ Instrument destroyed or reported as inoperable during construction. VW20-P1 through P6 were paved over. VW20-DS3 was damaged.

⁵ SAA and load cells connected to a multi-channel data logger (Model CR6 from Campbell Scientific), which is programmed to record a reading of the SA and load cells hourly, respectively.

2 INTERPRETATION

2.1 General

For the operable SIs and SAA, the cumulative displacement, incremental displacement, and displacement-time data was plotted in the A-direction (i.e., the direction of the A0-grooves).

For the operable VWPs, the recorded porewater pressures were converted to an equivalent water/piezometric elevation and plotted relative to ground surface elevation and the tip elevation for each instrument.

For the operable load cells, the recorded loads were plotted relative to daily air temperature. Note load cell data was only available from March 3, 2024, onwards.

The instrument data plots are included in Appendix I, and a summary of the instrument data is provided in Table 2.1 through Table 2.4. Since the previous consultant used imperial SI equipment and we used metric SI equipment to read the SIs, we had to re-initialize the SIs to the October 2024 reading. The SI data plots presented herein only include data taken with KCB's SI reading equipment. The data logger records a reading of the SAA hourly, but only one reading per month is shown on the cumulative and incremental displacement plots and only one reading per week is shown on the displacement-time plot to reduce noise reading to reading.

2.2 Zones of Movement

Discrete movement (i.e., movement occurring on a defined failure plane) was being recorded in

- TH20-DS2 between an approximate depth of 7.4 m and 8.4 m (elevation 1126.8 m to 1125.8 m) below ground surface before it sheared; and
- TH20-DS5 between an approximate depth of 3.3 m and 4.3 m (elevation 1138.2 m to 1137.7 m) below ground surface before the instrument became inoperable.

Some distributed movement has been recorded in the pile wall SIs, but otherwise no discernible discrete movement has been recorded in the pile wall SIs or the SAA.

2.3 Interpretation of Monitoring Results

Slope Inclinometer Data

The distributed movement recorded in the pile wall SIs before they were re-initialized in October 2024 indicates the piles have intercepted the failure plane and are transferring load to depths below the failure plane as the piles stabilize the slide mass. Based on the data obtained by the previous consultant up to May 2024, the tops of pile wall 1, 2, and 3 have deflected up to approximately 3.6 mm, 7.1 mm, and 1.9 mm, respectively, since installation. The walls will likely continue to deflect as they stabilize the slide mass, with increased deflection may occur in response to seasonal variations in freshet and precipitation infiltration.

Table 2.1	Slope Inclinometer Reading Summary
-----------	------------------------------------

			Date						Movement (mm) Rate of					f Movement	(mm/year)
Pile	Instrument	Initialized	Previous Maximum	Previous	Most Recent	Ground	Depth of Movement	Direction of Movement Skew	Maximum Cumulative			Incremental Since	Previous	Most	Change from
Wall	(Pile No.)	(Re-initialized)	Movement Recorded	Reading	Reading	Elevation (m)	(mbgs ¹)	Angle ²	Before Re- Initialization	After Re- Initialization	Total	Previous Maximum Cumulative	Maximum	Recent Reading	Previous Reading
	SI22-W2 (P37)	Sep. 14, 2022 (Oct. 17, 2024) ³		May 30, 2024	Oct. 17, 2024	1139.5	0.0 - 16.4	X-Direction, 181°	-5.1						
1	SI22-W3 (P57)	Oct. 26, 2022 (Oct. 17, 2024) ³		May 30, 2024	Oct. 17, 2024	1141.2	1.7 – 13.3	X-Direction, 146°	-1.6						
	SI22-W4 (P100)	Jul. 20, 2022 (Oct. 17, 2024) ³	N/A – Not provided	May 30, 2024	Oct. 17, 2024	1139.6	0.0 - 13.3	X-Direction, 182°	0.3	N/A – First reading after instruments re-initialized, need more data to assess.					
2	SI22-W5 (P117)	Jul. 20, 2022 (Oct. 17, 2024) ³	consultant	May 30, 2024	Oct. 17, 2024	1140.6	1.1 - 13.3	X-Direction, 177°	4.3						355855.
	SI22-W6 (P132)	Jul. 20, 2022 (Oct. 17, 2024) ³		May 30, 2024	Oct. 17, 2024	1141.5	0.0-12.7	A-Direction	7.1						
3	SI22-W7 (P174)	Jul. 20, 2022 (Oct. 17, 2024) ³		May 30, 2024	Oct. 17, 2024	1151.7	0.9 - 14.3	X-Direction, 161°	1.9						

Notes:

¹ Meters below ground surface (mbgs).

² Skew angle of the X-direction measured clockwise from the A-direction by the previous consultant and will be confirmed by KCB during subsequent readings.

³ Instruments re-initialized to the October 2024 reading when the SI reading equipment was changed.

Table 2.2 Shape Accelerometer Array Reading Summary

			Da	ate				Direction of Movement	Movement (mm)		Ra	ear)	
Pile Wall	Instrument ID (Pile No.)	Initialized	Previous Maximum Cumulative Movement Recorded	Previous Reading	Most Recent Reading	Ground Surface Elevation (m)	Depth of Movement (mbgs ¹)		Maximum Cumulative	Incremental Since Previous Maximum Cumulative	Previous Maximum	Current	Change from Previous Reading
1	SAA22-P15 (P15)	Nov. 24, 2022 (Jan. 18, 2023) ³	N/A – No discernible movement recorded.	May 30, 2024	Oct. 17, 2024	1137.5			N/4	A – No discernible mover	ment recorded.		

Notes:

¹ Meters below ground surface (mbgs).

³ Instruments re-initialized to the January 2023 reading when KCB began downloading the data for the instrument.

Instance of ID	Contal No	Approximate Location		Date		Ground Surface Elevation (m)	Tip Depth	Water Level		
Instrument ID	Serial No.		Installed	Previous Reading	Most Recent Reading		(mbgs ¹)	Previous Reading (mbgs ¹)	Most Recent Reading (mbgs ¹)	Change from Previous Reading (m)
VW20-S1	67106	Within Slide	Jun. 28, 2020	May 30, 2024	Oct. 17, 2024	1133.0	16.8	12.3	12.6	-0.3
VW20-S3	67102	Within Side	Jul. 11, 2020	May 30, 2024	Oct. 17, 2024	1152.9	12.7	8.4	8.7	-0.3
VW20-D3	67073	Ditch	Jun. 27, 2020	May 30, 2024	Oct. 17, 2024	1144.0	10.7	8.7	9.2	-0.5
VW20-D4	67076	Ditch	Jun. 30, 2020	May 30, 2024	Oct. 17, 2024	1148.1	11.6	11.6	11.6	0.0
VW20-DS1A	67086		Jun. 24, 2020	May 30, 2024	Oct. 17, 2024	1121.8	4.6	4.7	4.8	-0.1
VW20-DS1B	67089	Llieburgu	Jun. 24, 2020	May 30, 2024	Oct. 17, 2024	1121.8	11.4	10.5	11.6	-1.1
VW20-DS2A	67092	Embankment Slope	Jul. 12, 2020	May 30, 2024	Oct. 17, 2024	1134.2	8.2	2.7	3.6	-0.9
VW20-DS2B	67097		Jul. 12, 2020	May 30, 2024	Oct. 17, 2024	1134.2	22.2	18.7	19.0	-0.3
VW20-DS6A	67077		Jul. 05, 2020	May 30, 2024	Oct. 17, 2024	1121.0	6.1	3.8	5.2	-1.4

Table 2.3 Vibrating Wire Piezometer Reading Summary

Notes:

¹Meters below ground surface (mbgs).

Table 2.4Vibrating Wire Load Cell Reading Summary

Dilo	Instrument ID/			Date	1		Serviceability Limit				
Mall	Anchor No	Load Cell Sorial No	Installed	Previous Maximum Previous Most Recent State (SLS) Design Load	Maximum Load	Movinum Lood Drovious Dooding	Most Posont Pooding	Change from Previous			
vvali	AIICHOF NO.	Serial NO.	installeu	Recorded Load	Reading	Reading	/ Lock-Off Load (kN)		Previous Reduing	Wost Neterit Neading	Reading
	3U	VC2421	Oct. 22, 2022	Oct. 22, 2022	May 30, 2024	Oct. 17, 2024	255/125	126.0	118.7	116.2	-2.5
	5L	VC2422	Nov. 21, 2022	Jun. 09, 2023	May 30, 2024	Oct. 17, 2024	265/75	95.1	85.5	83.8	-1.7
	15U	VC2419	Oct. 22, 2022	Oct. 22, 2022	May 30, 2024	Oct. 17, 2024	255/125	126.0	115.2	113.8	-1.4
1	15L	VC2420	Nov. 21, 2022	Jun. 09, 2023	May 30, 2024	Oct. 17, 2024	265/75	89.4	80.6	78.7	-1.9
_	27U	VC2417	Oct. 21, 2022	Oct. 21, 2022	May 30, 2024	Oct. 17, 2024	255/125	126.0	106.6	105.5	-1.1
	27L	VC2418	Nov. 22, 2022	Jun. 09, 2023	May 30, 2024	Oct. 17, 2024	265/75	91.2	84.4	83.1	-1.3
	37U	VC2416	Oct. 22, 2022	Oct. 22, 2022	May 30, 2024	Oct. 17, 2024	255/110	113.0	92.7	89.3	-3.4

Shape Accelerometer Array Data

The SAA installed in the Pile Wall 1 has shown no discernible movement, except for some fluctuations in the top 4.5 m likely due to seasonal thermal variations (e.g., positive movement during colder months and negative movement during warmer months).

Piezometer Data

The VWPs have only been read three times since January 2022, and more data is needed to assess trends. However, based on the available data, the water level records in the VWPs appear to be either relatively steady, deceasing, or dry (i.e., water level at or below instruments tip elevation).

Load Cell Data

The loads measured in the loads cells installed in pile 1 (range from approximately 81 kN to 119 kN) are below the Serviceability Limit State (SLS) design loads provided in the Spring 2024 instrumentation report prepared by Thurber (range from 255 kN to 265 kN). Loads measured in the loads cell appear to fluctuate (± 10 kN) with temperature, with higher loads measured during warmer weather and lower loads measured during cooler weather, but more data is needed to assess.

3 RECOMMENDATIONS

3.1 Future Work

All operable instruments should continue to be read twice per year (spring and fall). Spring readings should be completed after late-May or early-June, due to the risk of water inside the instrument casings being frozen earlier in the year.

Now that construction is complete at the site, the site should again be inspected by the Maintenance Contract Inspector (MCI) and as part of the GP South region GRMP Section B inspections.

3.2 Instrument Repairs and Maintenance

No instrument repairs or maintenance is required, but the reading frequency of the SAA and load cells will be reduced from daily to weekly and monthly, respectively, to reduce noise between readings.

4 CLOSING

This report is an instrument of service of Klohn Crippen Berger (KCB). The report has been prepared for the exclusive use of Alberta Transportation and Economic Corridors (Client) for the specific application to the Peace Region (Grande Prairie District – South) Geohazard Risk Management Program (Contract No. CON0022166), and it may not be relied upon by any other party without KCB's written consent.

KCB has prepared this report in a manner consistent with the level of care, skill and diligence ordinarily provided by members of the same profession for projects of a similar nature at the time and place the services were rendered. KCB makes no warranty, express or implied.

Use of or reliance upon this instrument of service by the Client is subject to the following conditions:

- 1. The report is to be read in full, with sections or parts of the report relied upon in the context of the whole report.
- 2. The observations, findings and conclusions in this report are based on observed factual data and conditions that existed at the time of the work and should not be relied upon to precisely represent conditions at any other time.
- 3. The report is based on information provided to KCB by the Client or by other parties on behalf of the client (Client-supplied information). KCB has not verified the correctness or accuracy of such information and makes no representations regarding its correctness or accuracy. KCB shall not be responsible to the Client for the consequences of any error or omission contained in Client-supplied information.
- 4. KCB should be consulted regarding the interpretation or application of the findings and recommendations in the report.
- 5. This report is electronically signed and sealed and its electronic form is considered the original. A printed version of the original can be relied upon as a true copy when supplied by the author or when printed from its original electronic file.

Yours truly,

KLOHN CRIPPEN BERGER LTD.

Courtney Mulhall, M.Sc., P.Eng. Geotechnical Engineer

CM/GB/EV:bb

Cc: Chris Grapel, M.Eng., P.Eng.

ATTACHMENTS

Figure Appendix I Instrumentation Plots

FIGURE

NOTES:
1. HORIZONTAL DATUM: NAD83
2. GRID ZONE: UTM Zone 11N
3. IMAGE SOURCE: Microsoft Bing
4. Strikethrough indicates instrument

P HIGHWAY RIGHT - OF - WAY -1170-FRENCH DRAIN INSTALLED AND (DRILL ACCESS RAMP RECLAIMED, 200mm DIAMETER CULVERT PLACED UNDER ACCESS TO DRAIN WATER OVER ROCK SLOPE 1160 _1150-TH20 TH20-S2 MANHOLE 1 -1140 WA -(MH1) / V RIGHT -1130 -GRADED AREA AROUND WALLS HIGHWAY --CONSTRUCTED PILE WALL 3 SUBDRAIN NORTH -1120 -REMOVED AND DISPOSED OF W-BEAM GUARDRAIL, SUPPLIED AND INSTALLED MODIFIED THRIE BEAM GUARDRAIL -1110-EXISTING BIN WALL <u>20 30 40 50</u>m SCALE: 1: 1000 4. GREY GRADED AREAS SHOW AS-BUILT GROUND SURFACE CONTOURS AS SURVEYED BY WSP IN 2022/2023. Abertan Transportation HWY 40:36 KM 37.4 TO 38.2 LANDSLIDE REPAIRS (GP042) SITE PLAN SHOWING OVERALL NPV AS-BUILTS REVISION LOCATION SHEET DRAWING SITE CONTRACT | HIGHWAY GP042 22001 40:36 | 11 OF 34 | **22001–202102–RD–C011** NE16/SE21-59-6-W6M

APPENDIX I

.

Instrumentation Plots

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

Klohn Crippen Berger - Edmonton

