INSPECTION OF STEEL GIRDER BRIDGES

Albertan

Introduction

Topics Covered in this Presentation:

- · Bridge superstructure systems
- · Defects in steel members
- · Failure mechanics
- Fatigue
- Constrained Induced fracture (CIF)
- Inspection
- · Inspection of Pin & Hanger

1

1

Bridge Superstructure Systems

1. Rolled beams

- · Manufactured from one piece of steel
- · Webs are stocky, therefore no intermediate stiffeners.
- · Used as simple spans with span length from 9 to 15 m

2. Rolled beams with cover plates

- · Cover plates were added to increase the capacity
- · Cover plates were welded or riveted to the flanges
- · Welded cover plates created fatigue prone detail

3 3

Albertan

Bridge Superstructure Systems

Bridge Superstructure Systems

 Fabricated from thin plates, hence require stiffeners · Older built-up girders were riveted, newer are welded plates · Continuous girders can have spans over 150 m

· Similar in appearance as rolled beams Custom fabricated, not produced in rolling mills

3. Built-up Girders

Albertan

Albertan

5

5

4

4

Bridge Superstructure Systems

Steel Tub Girders

Albertan

7

7

Built-up Girders

Bridge Superstructure Systems

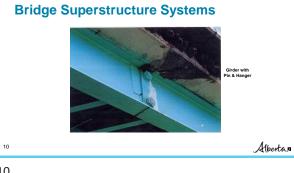
- 4. Girders with Pin and Hanger
 - Analysis is simplified for a hinged structure
 - It moves drainage away from piers
 - Only one pin is required for rotation
 - · For translation and rotation, two pins and hanger are provided

5. Steel Arches

9

9

11


11

- · Three types of arches: deck, through and tied
- Arch spans range from 300 to 500 m

Albertan

8

8

12	Albert	tan
12		

Bridge Superstructure Systems

Deck Truss

13

13

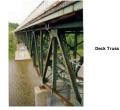
Bridge Superstructure Systems

15

15

Bridge Superstructure Systems

Albertan


14

Albertan

¹⁶

Bridge Superstructure Systems

Albertan

17 17

Primary and Secondary Members

Primary Members for Bridge Systems 1 to 4

- Fabricated girders / Rolled beams
- · Diaphragms for curved girders
- · Pin and hanger

Secondary Members for Bridge Systems 1 to 4

Diaphragms

¹⁸

Primary and Secondary Members

Primary Members for Bridge System 7

- · Trusses (chords, web members)
- Floor beams
- Stringers

Secondary Members for Bridge System 7

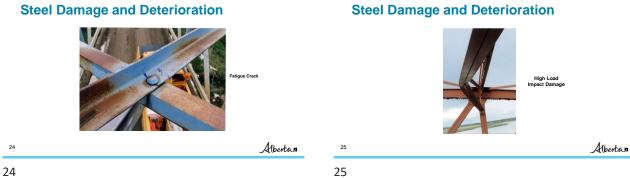
Bracing

19 19

Steel Damage and Deterioration

Albertan

23


23

Steel Damage and Deterioration

Albertan

Albertan

Steel Damage and Deterioration

26

Steel Damage and Deterioration

Steel Damage and Deterioration

29

29

Fatigue & Fracture in Steel Members

Fatigue

 Tendency of a member to fail at a stress level below its yield stress when subjected to repeated loading

Fracture Critical Member (FCM)

Member is in tension

Member is non-redundant, its failure causes partial or total collapse of a structure

Albertan

Albertan

³⁰ 30

28

Albertan

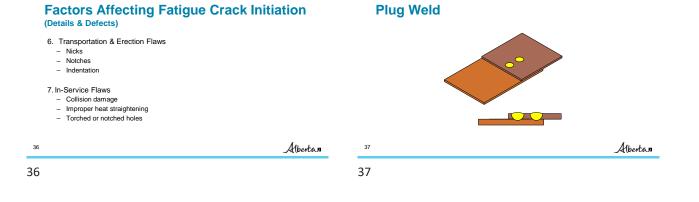
Types of Fractures in Steel Members

33 33

Fatigue Failure Process

Fatigue failure process consists of three stages:

- 1. Crack initiation
- 2. Crack propagation
- 3. Fracture
- 34


Fatigue Crack Categories

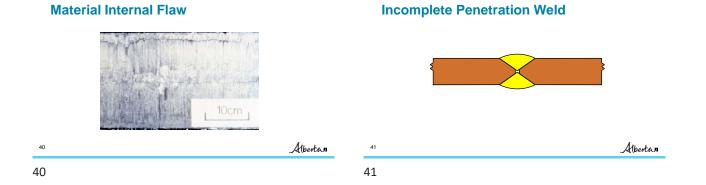
Albertan

35

- · Details and Defects
- Out-of-plane Distortion

Material External Flaw

Tack Weld

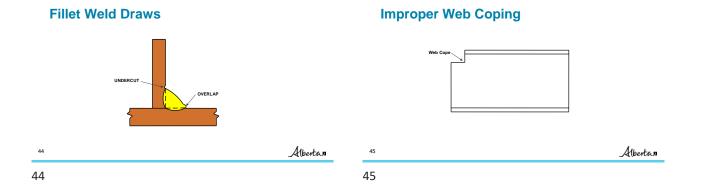

Albertan

39

39

Albertan

³⁸ 38


Incomplete Penetration Weld

Weld Crack Due to Slag Inclusion

Correct Web Coping

Albertan

47

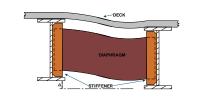
47

Torched Hole

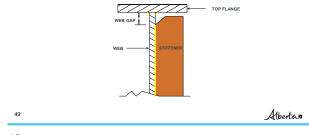
Albertan

46

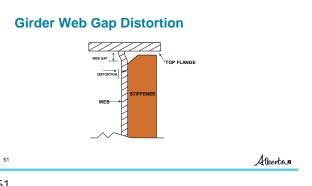
46

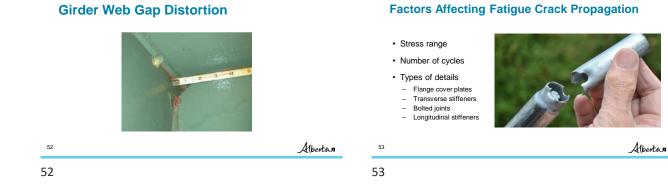

Torched Damage

Albertan

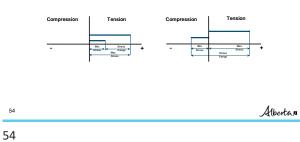

48 48

Girder Differential Deflection

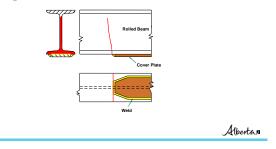




Factors Affecting Fatigue Crack Initiation (Out-of-plane Distortion)



49

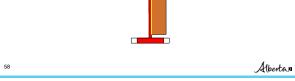

Stress Range

Flange Crack Growth Process

55

55

Through Crack at a Cover Plate



Albertan

56

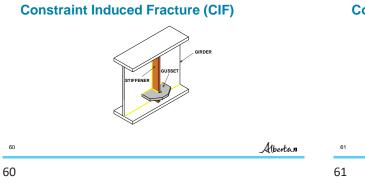
56

Crack Propagation Into the Web

Albertan

Albertan

₅ 57


59

59

Constrained Induced Fracture (CIF)

- · Fracture is not due to fatigue or number of cycles
- · Occurs suddenly with no prior signs
- Fractures are at intersecting welds or at small gaps between intersecting welds
- · Girder fracture at Hoan bridge Milwaukee was due to CIF

Constraint Induced Fracture (CIF)

Constraint Induced Fracture (CIF)

Constraint Induced Fracture (CIF)

Albertan

63

Inspection Procedures & Locations

Procedures

- Visual - Hands-on inspection
- Physical
 - Removal of dirt, paint etc.
- Identification - Fatigue crack may be identified by the development of rust stains
- Advanced Inspection Techniques

Albertan

65

Inspection Procedures & Locations

Locations

- Bearing areas
- Shear zones
- Flexure zones
- · Fatigue prone details
- Out-of-plane distortion

detail · Secondary members Areas that trap water and • debris

· Areas exposed to traffic

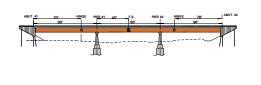
Albertan

· Constraint induced fracture

What to do if a Crack is Detected?

- · Determine significance of crack on load carrying capacity
- · Evaluate cause of cracking
- · Show sketches with details of size and location
- · Drill hole at the tip to arrest the growth
- · Check with dye penetrant
- · Take good photographs showing all the details
- Note: Cracks <u>perpendicular</u> to primary stresses are very serious Cracks parallel to primary stresses are less serious

68


Albertan

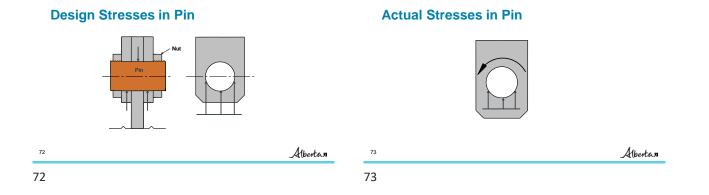
E

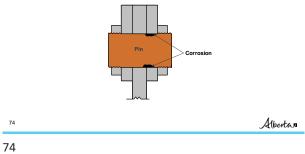
69

Pin Location

70

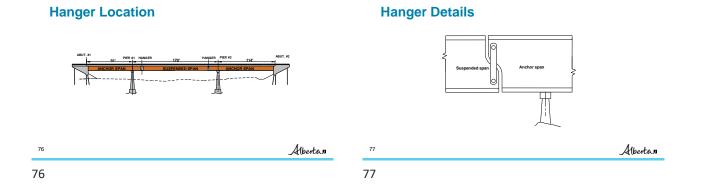
Albertan

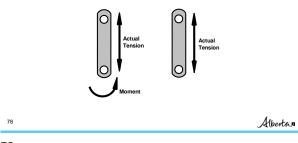




71

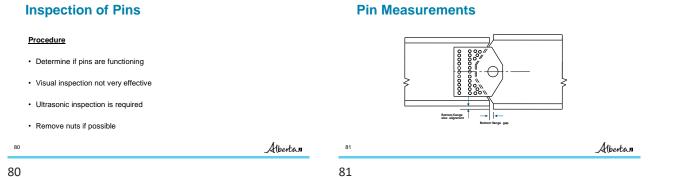
Pin Detail




High Stress in Pin Due to Corrosion

75 75

Deterioration of Pin & Hanger


- Frozen Corroded
- · Cracks in welded shear plates

<u>Hanger</u>

- Twisted or bent
 Ceased
 Cracks in edges

Preparation for Inspection

Albertan

83

83

Removal of Nuts

Pin Measurements

Albertan

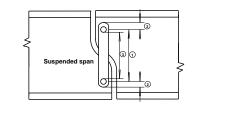
U/T Inspection

Inspection of Hangers

Procedure

85

85


- Report any corrosion
- · Hanger plate is as critical as pin.
- · Examine edges
- · Check hangers for bowing, out of plane bending

Albertan

84

84

