CONCRETE PHYSICAL & MECHANICAL PROPERTIES

Introduction

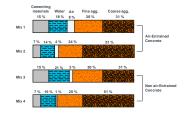
Composition

1

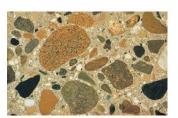
- Physical Properties
- Mechanical Properties
- · Defects & Deterioration

1 Albertan

0



Composition


- Portland Cement.
- · Aggregate.
- Mixing Water.
- Entrapped Air.
- Admixtures.Supplementary Cementing Materials.

3 Albertan

Proportions of Materials in Concrete

Cross-section of Concrete

Albertan

4

Albertan

5

Portland Cement

6

- Invented in 18th century in England and was called Portland cement due to its similarity to Portland stone, a type of building stone commonly used.
- Chemical compound which reacts with water (hydration) to form a stone like mass.

 $C_3S + C_2S + H_2O \longrightarrow C_3S_2H_2 + CH$

Portland Cement

• 73% Limestone

- 23% Clay2% Iron
- 3% Sand

Albertan

Albertan

7

Cement Manufacture

8

Cement Manufacture

Albertan

Albertan

9

Types of Cement

- Type "GU" General use.
- Type "GUL" 1st test project in Alberta in 2022 15% limestone added
- Type "HE" High early strength.
- Type "MS" Moderate sulfate resistance.
- Type "HS" High sulfate resistance.
- Type "MH" Moderate heat of hydration.
- Type "LH" Low heat of hydration.

10

Albertan

Water

- Potable water
- · Impurities cause
 - abnormal set
 - decreased strength
 - volume change
 - efflorescence

corrosion of reinforcement

Albertan

12 Albertan

Characteristics of Aggregate

· Clean & sound.

· Chemical stability

· Abrasion resistance

Alkali aggregate reactivity

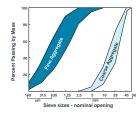
Freeze & thaw resistance

Shape and surface texture

Wetting & drying properties

Aggregate grading

13


Albertan

12

Aggregate

13

Grading Limits

Albertan

Fineness Modulus

Sieve Size	Percentage Retained by Mass
10 mm	Ō
5 mm	2
2.5 mm	15
1.25 mm	35
630 µm	55
315 µm	79
160 µm	97
Total	283

Fineness Modulus = 283/100 = 2.83

Albertan

14

Air-Entrained Concrete

- · Improves freeze-thaw resistance
- · Improves workability
- Finishes sooner
- · Reduces water

18

- · Reduces segregation and bleeding
- · Improves sulfate resistance
- Entrained air content from 5% to 8%

Albertan

17

Air-Entrained Concrete

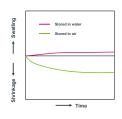
Albertan

16

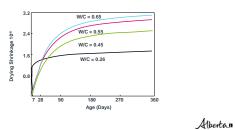
PHYSICAL PROPERTIES

——

Mbertan


Physical Properties

- Thermal expansion:
 - Concrete 9.9 x 10⁻⁶/°C
 - Steel 12.0 x 10⁻⁶/°C
- Volume change due to moisture:
 - Swelling
- Shrinkage


19

Albertan

Swelling/Shrinkage

Water/Cement Ratio & Shrinkage of Paste

20

Albertan

21

21

MECHANICAL PROPERTIES

Mechanical Properties

• Strength

- Compressive (28 day - f' c) - Tensile (10% of f' c)

- Shear (12% to 13% of f' c)
- Flexural (14% of f' c)

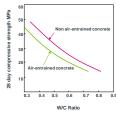
Abrasion resistance

Creep

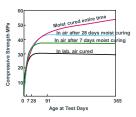
Fire resistance

Durability

Permeability


Albertan

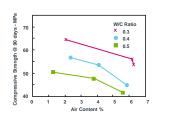
22


23

Albertan

Water/Cement Ratio vs. Strength

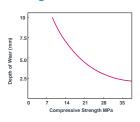
Effect of Curing on Strength


Albertan

Albertan

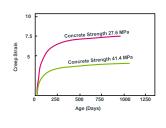
Albertan

24

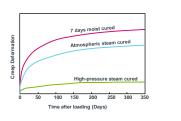

Compressive Strength & Air Content

Wear vs. Strength

25

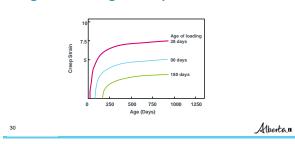

27

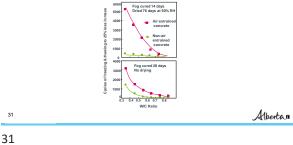
26 Albertan


26

Concrete Strength & Creep

Curing Method & Creep


29


Albertan

Albertan 28

Age of Loading & Creep

Freeze/ Thaw Resistance, Air & W/C Ratio

30

Permeability, W/C Ratio & Curing **Documents** **Output** **Out

32 33

Deterioration Stains

Staining, Efflorescence & Corrosion

Albertan

34

Albertan

35

Deck Ponding

36

Albertan

Freeze - Thaw Damage

Albertan

37

Scaling Damage

Albertan

Light Scaling

Albertan

38

Medium Scaling

Heavy Scaling

Albertan

40

41

Deteriorated Concrete Approach Slab

Albertan

Surface Abrasion

Albertan

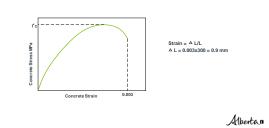
Albertan

42

Sound Concrete Deck

44

46


Sound Concrete Deck Underside

Albertan

45

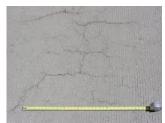
Concrete Stress- Strain Relationship

High – Performance Concrete

- High strength.
- High modulus of elasticity.
- High abrasion resistance.
- Low permeability and diffusion.
- Resistance to chemical attack.
- High resistance to frost.
- Ease of placement

Albertan

Albertan


Self – Compacting Concrete

- Able to flow and consolidate on its own.
- · Must be cohesive to fill spaces without segregation.
- · Useful wherever placing is difficult.
- SCC reduces the need for vibration.
- It is based on increasing the amount of fine material without changing the water content.

49

Albertan

Shrinkage Cracks

Albertan

48

Map Cracking

Flexural Cracks

Albertan

50

Construction Joint

52

Corrosion Spalls & Pop – outs

Albertan

Albertan

53

Corrosion Spall

Albertan

Corrosion Spall

Albertan

54

Alkali Aggregate Reaction

High Load Impact

Albertan

56

High Load Damage

58

Albertan

59

Albertan

57

Severe High Load Damage

Albertan

