STEEL - PROPERTIES

History of Steel

- · Cast Iron
 - Cast iron preceded wrought iron.
 - It is brittle, has high carbon content with low tensile strength.

 - It has excellent casting properties.
 - It was mainly used to carry axial compression loads.
- Wrought Iron
 - It replaced cast iron, because of good tensile strength properties.

Albertan

0 1

History of Steel

Steel

2

- · Steel gradually replaced wrought iron until about 1890.
- Steel available in commercial quantities only in the last 100 years
- The chemistry of steel was not controlled until about 1960
- Strength and elongation were guaranteed but not the chemistry
- · This was satisfactory for riveted structures but not for welded details

Albertan

History of Steel

3

- · Welding was first introduced in bridges in about 1936.
- During the World War, US produced a large number of welded cargo
- Many of these ships broke apart due to brittle fracture of steel adjacent to the welds.
- Welding contributes to brittle fracture because of introduction of severe cooling rates in the steel adjacent to the weld HAZ (Heat Affected Zone).

Albertan

History of Steel

Examples of failed Steel Structures

- St. Maurice Bridge Quebec failed in January 1951. It was four years old.
- The Freemont Bridge in Portland had
- a failure in truss joint in 1971. St. Paul, Minnesota girder in the Lafayette Street Bridge failed 1975.
- Laval Que. Concordia Overpass 2006 5 people died.

 447' (136m) Fern Hollow bridge in Pittsburg collapsed & fell 100' 2022
- https://www.youtube.com/watch?v=5_tesnnihRk&ab_channel=USATODAY

Iron

5

- Iron in the pure form is a soft, shiny metal like aluminum.
- · However, it is never found in this state.
- · Iron oxidizes extremely easily.
- · In nature it is always found as an oxide.

Albertan

4

What is Steel?

 Metal prepared by adding other metals or non-metals to secure desirable properties.

Steel

· It is an alloy of iron, carbon, and other trace elements.

Steel Making Process

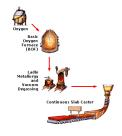
- Iron ore, coke, and limestone are major raw materials.
- · Coke is obtained by distilling coal.
- · Raw material is charged into a Blast furnace which has a temperature of 1600°C
- · Iron melts at the bottom.
- · Solidified iron is called "Pig Iron"

Albertan

Albertan

Steel Making Process

- Molten metal from Blast furnace is taken into Basic Oxygen furnace
- Chemical analysis of the molten material is done
- Steel semis, billets are heated to 1200°C for rolling and finished products.



Albertan

Albertan

9

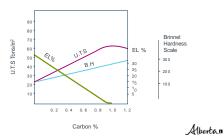
8

Effects of Carbon

Increased carbon in steel:

- · Increases strength
- Increases hardness
- · Increases hardenability · Reduces ductility
- Reduces toughness
 Reduces machinability

Albertan


10 11

Albertan

Effects of Carbon

% Carbon	Yield Strength (ksi)	% Elongation	Comments
4.0			Grey cast iron
2.5			White cast
1.1 to 1.7	90 – 100	0	Very high carbon steel
0.9 to 1.1	110 – 118	0	High carbon steel
0.7 to 0.9	94 – 118	8 – 14	Spring steel
0.55 to 0.7	75 – 94	14 – 19	Higher carbon steel
0.3 to 0.55	65 – 75	19 – 24	Medium carbon steel, weldable with care
0.15 to 0.3	48 – 65	24 – 28	Mild steel for bridges
0.05 to 0.15	40 – 48	28 – 34	Very mild steel, pure iron

Effects of Carbon

13

Albertan

12

Effects of Other Alloying Elements

1. Sulphur

14

- · Higher sulphur causes porosity and hot cracking in welding
- Can cause brittleness in hot metal
- · Increases hardenability
- · It is not desirable and is kept as low as possible
- Its ill effects are reduced by adding other alloying elements such as manganese.

Effects of Other Alloying Elements

- 2. Phosphorus
 - Like sulphur it is not desirable and is kept as low as possible
 - It increases strength and hardenability.
 - · It reduces ductility and weldability.
- 3. Manganese
 - · It is added to counteract the ill effects of sulphur
 - Increases strength, hardenability and notch toughness
 - It reduces weldability

Albertan

15

Albertan

Effects of Other Alloying Elements

4. Silicon

16

- It is used as de-oxidizer in steel making and produces fine-grained steel.
- 0.15 to 0.50 range is desirable and is known as "killed steel".
- · It increases strength and hardenability.

Effecto	of Other	Allerine	Elements
FIIDLIS	OT UITHER	Allavina	FIGHIEFTS

5. Aluminum 9. Molybdenum

6. Chromium 10. Nickel

7. Copper 11. Tungsten

8. Columbium 12. Vanadium

Albertan

Albertan

Albertan

Basic Metallurgy

Grains

- · The crystals of metals are referred to as grains.
- The smallest grain of metal contains a large number of atoms.

Space-lattice

 All grains are composed of atoms bound together in a definite pattern or structure. This atomic structure is called space-lattice. **Basic Metallurgy**

Structure of a Metal

The characteristics of the structure of a metal are due to:

- · The atoms making up the metal.
- The manner in which the atoms are arranged.

Space-lattice Types

There are 14 possible space lattice types.

- The body centered cubic (BCC) has 9 atoms.
- The face centered cubic (FCC) has 14 atoms.

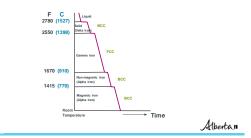
19

Albertan

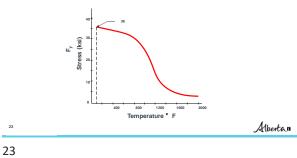
17

18

Space-Lattice Types



20 21


Albertan

Cooling Molten Iron

22

Temp. Effect on Yield Stress

Definitions

Annealing

 Heating and holding at a suitable temperature and then cooling at a suitable rate, for such purposes as reducing hardness, improving machinability, facilitating cold working, producing a desired microstructure, or obtaining desired mechanical, physical, or other properties.

Hardenability

24

 Steel property which describes the depth to which the steel may be hardened during quenching.

Albertan

Definitions

Hardness

· A measure of a material's resistance to localized plastic deformation.

Heat Treatment

 The way to produce particular microstructures and properties in steel by heating and cooling.

Killed Steel

 Steel deoxidized with a strong deoxidizing agent, such as silicon or aluminum, to reduce the oxygen content to such a level that no reaction occurs between carbon and oxygen during solidification.

Albertan

25

Definitions

Normalizing

 In this process, the steel is heated to about 100 F above the transformation range, held there only briefly and then cooled in still air. This process refines the grain.

Quenching

 In heat treatment, the step of cooling metals rapidly in order to obtain desired properties. **Definitions**

Stress Relieving

 Heating to a suitable temperature, holding long enough to reduce residual stresses and then cooling slowly to minimize the development of new residual stresses.

Tempering

 It is the process at which hardened steel is reheated at some point below the transformation range and cooled in air or water.

Albertan

Albertan

26

Definitions

Toughness

28

 An indication of steel's capacity to carry load and absorb energy, particularly in the presence of a notch or a crack.

Transformation Temperature

 The temperature at which a metal when cooled changes from one type of structure to another.

Physical Properties

- Strength
 - Compression
 - Tension
 - Fatigue
- Ductility
- Weldability

29

- · Fire Resistant
- · Corrosion Resistant
- Notch toughness
- Machinability
- Formability

Albertan

Albertan

Tensile Stress - Strain Curves

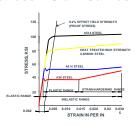
Elastic Range

Stress is proportional to strain. In this range there is no permanent deformation.

Plastic Range

In this strain increases without the appreciable increase of stress.

Strain Hardening Range


In this strain increase is accompanied with increase in stress.

Proof Stress

Stress required to cause a specified small , permanent extension.

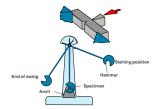
Albertan

Tensile Stress - Stain Curves

Albertan

30

Charpy Test

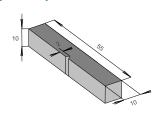

Charpy Test
Charpy test is used to determine metal toughness i.e., impact strength

Impact Energy
It is the work done to fracture the specimen as measured by the Charpy test.

 $Impact\ energy = Elastic\ strain\ energy + Plastic\ work\ during\ yielding + Work\ done\ to\ create\ fracture.$

Charpy Test

33



Albertan

Albertan

32

Charpy test Specimen

Albertan

Albertan

35

34

Charpy Test for Carbon Steel

Charpy Test

Albertan

37

Charpy Test

Albertan

36

Charpy Test

Albertan

Factors Affecting Fracture Behavior

- Impact load
- Sub zero temperature range
- Notch

39

Albertan

38

Common Steel Shapes

Vires Steel Bars Rolled Beams Steel Plates Built-up Shapes Albertan

Types of Steel

	Steel Designation	Yield Strength (ksi)	Comments	
	OH Steel	26	Used until about 1905	
	EIC Steel	30	Used until about 1935	
	A7	33	Used until about 1960	
	A36	36	1960 to Present. (First steel with guaranteed chemistry)	
	G40.8 (A35)	40	Normalized and used by Alberta up-to 1968	
	G40.12 (A572)	44	Normalized and used by Alberta up-to 1968	
	A441	50	Normalized and used by Alberta up-to 1968	
1 .				Albertan

40 41

Current CSA C40.21 Steels

Nominal yield strength, MPa									
	Type	260	300	350	380	400	480	550	700
Grade									
	w	260W	300W	350W	380W*	400W	480W	550W	-
	WT	260WT	300WT	350WT	380W T**	400WT	480WT	550WT	-
	R	-	-	350R	-	-	-	-	-
	Α	-	-	350A	-	400A	480A	550A	-
	AT	-	-	350AT	-	400AT	480AT	550AT	-
	Q	-	-	-	-	-		-	700Q
	QT	-	-	-	-	-	-	-	700QT

CSA Charpy Impact Requirements

	Standard Charpy impact test temperature for specified category				
	Category	Standard test temperature °C			
	1	0			
	2	-20			
	3	-30			
	4	-45			
	5	To be specified by purchaser			
3			Albertan		

42 43

CSA Charpy Impact Requirements

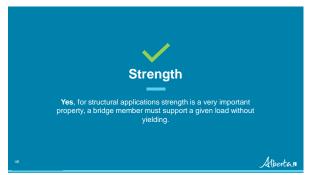
Standard Charpy impact energy for specified grade Grade Absorbed Energy (Joules) 20 260WT 300WT 20 350WT 27 400WT 27 480WT 27 350AT 27 400AT 27 480AT 27 700QT Albertan

What are the three most important properties for plate steel?

Strength?

Machinability?

Formability?


Corrosion Resistant?

Weldability?

Notch toughness?

Albertan

44 45

46 47

48 49

