MAINTENANCE & REHABILITATION OF CULVERTS

Introduction

- · Widely used, started in 1950
 - low cost alternative to bridges
 road system expansion in 60s and 70s
- Installed by road builders
 - local road authorities
 - district forces (day labour)

2

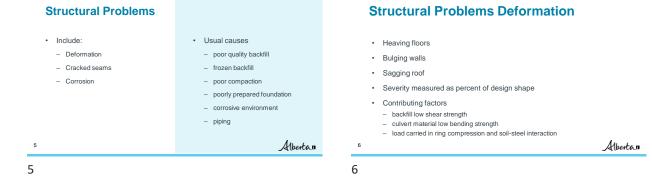
2

· Designs by Bridge Engineering then Regional Bridge staff, now consultants

1

Technical Developments

- · Early history many problems
 - spectacular uplift failures
 - undersizeddeformation and cracking
- · Need for quality backfill and compaction not recognized
- · Importance of end treatments


Albertan

Culvert Inspection

- Regular inspection initiated in mid-80s
 - before major problems or failures reported
- · inspection provides early detection of changes
- · most defects develop slowly
- · poor backfill often detected at first inspection
- · As constructed records shape at ends, quarterpoints and middle

4 4 Albertan

Albertan

Structural Problems Cracked Seams

- Primary cause is deformations
 - sometimes deformations small; 5%
 - may occur at one or more seams
- · Contributing factors
 - incorrect laps
 - over torquing bolts
 - improperly curved plate
- Severity measure
 - number of seams cracked location of seams

 - remaining steel between cracks

Structural Problems Corrosion

- 950 mV galvanizing is good
- 800 mV galvanizing is failing

Albertan

8 8

Albertan

Waterside Corrosion on Culvert Floor

Albertan

Soilside Corrosion Damage

¹⁰

。 9

Corrosion

- Electrolytic corrosion
 - caused by external stray currents
 - other cathodic systems
 - overhead power lines
- Galvanic corrosion
 materials of different potential in an
 - electrolyte

 impurities in metal
 - differences in coatings
 - surface defects
 - moist soil good electrolyte
 - generates own current

Albertan



Electrolytic Corrosion Mechanism

12 12

Galvanic Corrosion Mechanism

Repairs and Maintenance Methods

- Monitoring
- Strutting
- Liners
- · Crack repairs
- Cathodic protection

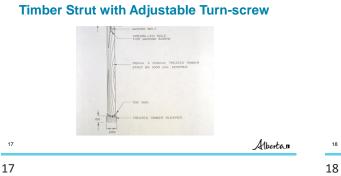
14 14

Monitoring

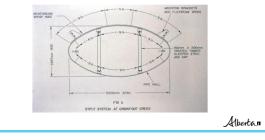
- Should be recommended sparingly only when measurable (Section 13.9.1.2)
- · First option, low cost
- structure may stabilize especially deflections
- Provides ongoing record
 - mark ends of cracks
 - measure magnitude and location of deformations
 - establish reference points
 - photographs

15

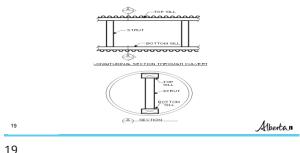
Strutting


- · Oldest, often cheapest method
- · Effective for extreme distress
- · Not suitable for drift and ice locations
- Components
 - vertical struts between sleepers
 - cut to length, jacked in place
- timber or steel
- Life ~25 years for timber maybe longer for steel struts

16


Albertan

Albertan



Strut Layout for Horizontal Ellipse Culvert

18

Installing Struts

20 20

Albertan

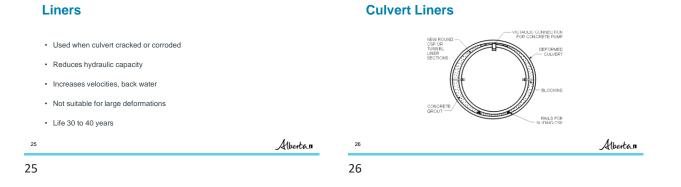
22

22

21 21

23 23 Albertan

Steel Struts



24 24

TT Struts and Braces

Albertan

Liner Types

- CSP culvert - 1.5m to 3.0m culverts
- SPCSP
- larger than 3.0m culverts
- limited length
- large culverts and long length Smooth wall pipe

Tunnel liner

- Usually <1.5 m diameter culverts

27 Albertan 27

Installing CSP Liner into Existing SPCSP Culvert

Internal Bracing Installed Prior to Grouting

Albertan

29 29

Installing Steel Headwalls at Ends of Pipe to contain grout

30

30

Grout / transit mix installed through holes cut into roof of original pipe.

31 31 Winch at Outlet to pull new CSP liner into pipe

32 32

Albertan

Albertan

Albertan

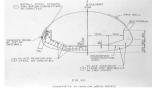
Victaulic Connector for Concrete Pump

Tunnel Liner Ready for Grouting

Installing Tunnel Liner Inside Culvert

34 34

Smooth Wall Steel Pipe Liner in CSP

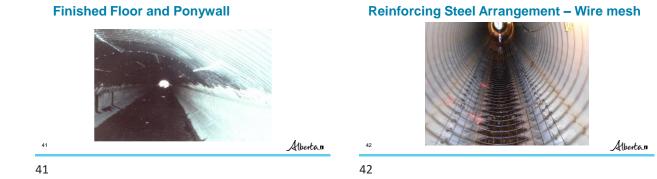

36 36

33

Concrete Floors

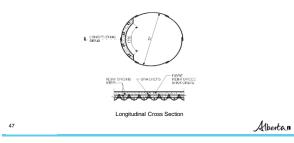
- · Repair severe perforations of invert
- · Reinforce cracked seams and sidewall deformation of arch culverts
- · Reduces hydraulic capacity

Details of Concrete Floor for SPCSP Arch


Reinforcing Steel Arrangement

Concrete Floor Cast

 Ends of Pipe Tarped off to heat.


Crack Repair Methods

- stop drilling crack ends
- reinforced concrete
- welding cracks
- arch culverts
- shotcrete
- reinforcing plates
 welded
 - Bolted

₄₅ 45

Albertan

Longitudinal Seam Reinforcing

Pump and Mixer for Prewetting

48 48

Not suitable for: small cracks

Shotcrete Reinforcing

· Preferred method for repairing

· Stiffens joint and transfers ring

sprayed over shear connectors

cracks

compression

and rebar20-year life

46

46

- cracks on both sides
- severe corrosion
- large deformations

Albertan

Detail of Reinforcing and Shear Connectors **U-bracket Shear Connector** m = _____ RADIUS U-BRACKE 49 Albertan 50 Albertan 49 50

Sandblast Equipment

51 51 **Heaters**

52 52

Reinforcing and Shear Connectors Ready for Shooting

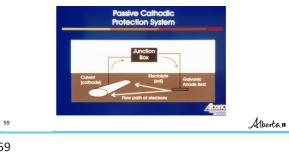
Albertan

₅₃ 53

	54		Albertan
ŗ	54		

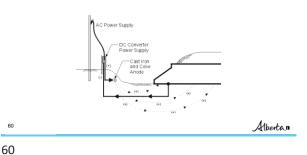
Completed Crack Reinforcing Beam

56 56

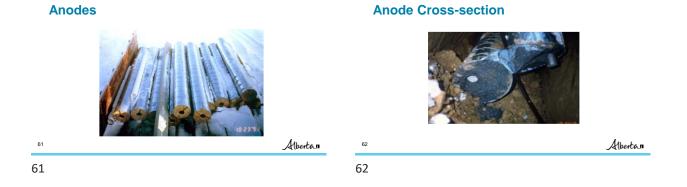

₅₅ 55

Albertan

· Impressed current system · Passive system · Prevents corrosion - dissimilar metals create current and - 20 to 60 volts and 4 to 16 amps - impressed uniform potential potential - anode sacrificed to protect structure - available power on site, 120/240 AC - many magnesium anodes sacrifice to - soil side corrosion only protect structure - power supply, anode bed, electrolyte · System types - 1 to 2 amps and 1 to 2 volts - life - 15 to 25 years - impressed current system - life - 15 to 25 years - passive system Albertan 58 58


Passive Cathodic Protection

Cathodic Protection


Culvert Cathodic Protection

Cathodic Protection

57

Jacking Culvert Under Highway

63 63

Albertan

Environment Controls - Siltation Fence

Albertan

₅ 65

