

Types of Paint

Paints are generally solutions of solids such as pigments and other chemicals in a liquid carrier or vehicle used for transporting the solids to a surface needing protection. At the surface they may react chemically to polymerize.

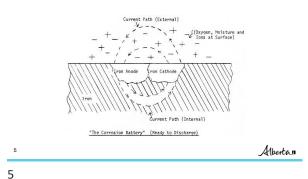
Some common types are:

- 1. latex coatings emulsion in water (acrylics and vinyl)
- 2. lacquers solutions in which the solid resins do not change or react as the solvent
- evaporates, they become hard (chlorinated rubber, asphaltic coatings) 3. air oxidizing coatings oil based coatings that react with oxygen to harden (alkyds, epoxy esters, linseed oil)
- chemically reactive coatings two component polymers sometimes without solvent (epoxy, urethanes)

Albertan

4

4


Corrosion

1. Caused by thermodynamic instability of steel.

- 2. Is an electrochemical process.
- 3. The rate of corrosion is based on electric current generated by potential (voltage) differences with the steel.
- 4. Ohms Law: (current) I = E (voltage) R (resistance)

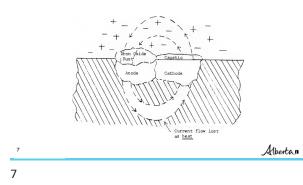
Albertan

Chemical Reaction (1st Stage)

Cathode (adjacent protected area)

- a) $2H^+ + 2e^- \longrightarrow H_2$ (hydrogen gas)
- b) $4H^+ + O_2 (air) + 4e^- \longrightarrow 2H_2O (water)$
- c) $O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$ (alkali)

The alkali buildup attacks some paint.



Albertan

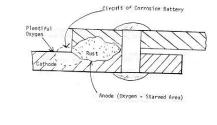
Albertan

6

Chemical Reactions (2nd and 3rd Stages) $\frac{2^{nd} Stage:}{Fe^{++}(@ anode) + 2OH^{-}(@ cathode) \longrightarrow Fe_2(OH)_2 (rust)}$ $\frac{3^{nd} Stage:}{2Fe(OH)_2 + O_2 \longrightarrow Fe_2O_3 (iron ore hematite) + H_2O}$

8

Requirements For Corrosion


- 1. Thermodynamically unstable metal (iron)
- 2. Electrolytic conduction of ions (water)
- 3. Electrical conductor of electrons (metal)
- 4. Electron acceptor (hydrogen ions or dissolved oxygen)

。 9 Albertan

10

t = coating thickness

Pack Rust or Crevice Corrosion

Corrosion Current at Breaks in Paint Coating

Albertan

Albertan

(PA - A_p) - (PC + C_p)

 $\begin{array}{l} A_p = electrical \ potential \ @ \ anode \ from \ buildup \ of \ corrosion \ by \ products \\ C_p = electrical \ potential \ @ \ cathode \ from \ buildup \ of \ corrosion \ by \ products \end{array}$

RD = electrical resistance at the discontinuity (electrolyte) RL = electrical resistance of the moisture outside the discontinuity

Electrical current I = $\frac{1}{RD t + RL + RC t}$

RC = electrical resistance of the coating

PA = electrical potential @ anode PC = electrical potential @ cathode

Pack Rust

13

13

Albertan

Perforated Bottom Chord

14

Albertan

14

Distorted and Perforated Plate Due to Pack Rust

How Paint Works To Prevent Corrosion

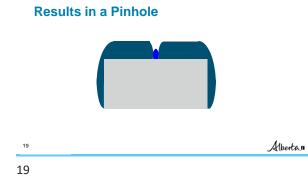
- 1. Eliminates the electrolyte (separates it from the steel)
- 2. Increases the electrical resistance of the corrosion circuit
- 3. Reduces the concentration of electron acceptors (H+ and O2)

16

16

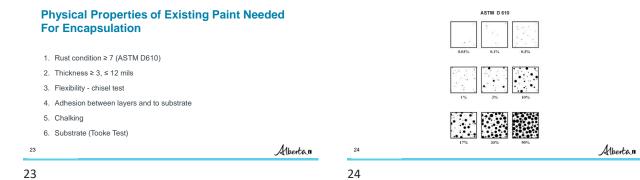
17

17


Primer Layer:
a) inhibitive
b) barrier (increase RC t) purpose - increase Ap, Cp and R
Intermediate Layer:
a) increase R
b) reduces pinholes and permeability
Topcoat:
a) ultraviolet resistance
b) colour
c) toughness

Wet Paint on Steel – Trapped Air

- Paint thins on drying in relation to solids content
 60% solids 5mils wet 3 mils dry


18		Albertan
18		

20

Albertan

TOOKE TEST



Albertan

26 26

Blisters and Scaling

28

Albertan

25

CLASSIFICATION	RINACE OF CROSS-CUT ANEA PRON WRICH FLATER AND COCUMED.			
53				
49	##		##	
я	##		#	
23	#			
и		Dat 20 (B)		
08	OREATER TRUE 45%			

Albertan

³⁰

31 S1

29

Cause of Painting Cost Escalation

Various environmental and safety regulations concerning the removal and disposal of lead-based paints.

		Albert	tan
Present	100% Recovery	\$500 to \$550/ M ²	
2004	90% Recovery	\$300 to \$350/ M ²	
2002	90% Recovery	\$180 to \$200/ M ²	
1999	90% Recovery	\$120 to \$140/ M ²	
Mid 1900's	80% Recovery	\$80 to \$100/ M ²	
Early 1990's	Enclosure	\$50 to \$60/ M ²	
Late 1980's	No Containment	\$15 to \$20/ M ²	

33 33

Questions?