Basic Structural Considerations

Basic Structural Considerations

Considerations

Technical Standards Branch Class B Bridge Inspection Course

Transportation

Introduction

• Bridge members must be able to carry the loads applied to them.

• This presentation considers:

• how loads are applied to members

• how bridge members are stressed by loads

• how bridge materials resist stress

Technical Standards Branch Class B Bridge Inspection Course

Transportation

Technical Standards Branch Class B Bridge Inspection Course

Basic Structural Considerations

Stresses

- Loads cause stresses in a member.
- Stresses are the internal forces that the member experiences at its different locations.
- Stress has units of Force/Area e.g. kips per square inch (ksi), Newtons per square millimetre (MPa).
- The following types of stress occur in bridge members:
 - tension stress
 - compression stress
 - bending stress
 - shear stress

Technical Standards Branch Class B Bridge Inspection Course

BIM
Bridge Inspection and Maintenance

Hangers - Tension Stress • Below is a Free Body Diagram of a hanger as well as of a piece cut out from the hanger. • What stresses must be present at the cuts to keep the pieces of the hanger from separating? • The stresses are the same at each location and try to lengthen the hanger. Tension STRESSES Technical Standards Branch Class B Bridge Inspection Course BIM Bridge Inspection and Manneaunce

Basic Structural Considerations

Basic Structural Considerations Stress In Steel • Different bridge materials respond to stress in different ways. • Shown below is a stress-strain diagram for steel. • Strain is a measure of the stretching or shortening of a member under stress. • Steel is strong in both tension and compression. • Steel that has reached its yield stress lengthens or shortens under constant stress. Technical Standards Branch Alberta. Class B Bridge Inspection Course BIM Transportation 20

32

Transportation